Cornell University

View map

Machine Learning and Automated Experiment in Microscopy: from learning physics to making better materials

Sergei V. Kalinin

University of Tennessee, Knoxville

Abstract: Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. Over the last several years, increasing attention is attracted to the use of AI interacting with physical system as a part of active learning – including materials discovery and optimization, chemical synthesis, and physical measurements. For these active learning problems, microscopy arguably represents an ideal model application combining aspects of materials discovery via observation and spectroscopy, physical learning with relatively shallow priors and small number of exogenous variables, and synthesis via controlled interventions. In this presentation, I will discuss recent progress in automated experiment in electron and scanning probe microscopy, ranging from feature to physics discovery via active learning. The applications of classical deep learning methods in streaming image analysis are strongly affected by the out of distribution drift effects, and the approaches to minimize though are discussed. I will further illustrate transition from post-experiment data analysis to active learning process, including learning structure-property relationships and materials discovery in composition spread libraries. Here, the strategies based on simple Gaussian Processes often tend to produce sub-optimal results due to the lack of prior knowledge and very simplified (via learned kernel function) representation of spatial complexity of the system. Comparatively, deep kernel learning (DKL) and structured Gaussian Processes methods allow to realize both the exploration of complex systems towards the discovery of structure-property relationship, and enable automated experiment targeting physics (rather than simple spatial feature) discovery. The latter is illustrated via experimental discovery of ferroelectric domain dynamics in piezoresponse force microscopy. For probing physical mechanisms of tip-induced modifications, I will demonstrate the combination of the structured Gaussian process and reinforcement learning, the approach we refer to as hypothesis learning. Here, this approach is used to learn the domain growth laws on a fully autonomous microscope. The future potential of Bayesian active learning for autonomous microscopes is discussed. These concepts and methods can be extended from microscopy to other areas of automated experiment.

0 people are interested in this event

User Activity

No recent activity