Cornell University

This is a past event. Its details are archived for historical purposes.

The contact information may no longer be valid.

Please visit our current events listings to look for similar events by title, location, or venue.

MSE Fall Seminar Series

Thursday, October 14, 2021 at 4:00pm

Virtual Event

Machine Learning for Scanning Probe and Electron Microscopy: from Imaging to Atomic Fabrication


Sergei V. Kalinin - The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. However, the constantly emerging question is how to match the correlative nature of classical ML with hypothesis-driven causal nature of physical sciences. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics through self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiment (AE) in imaging.

In this presentation, I will discuss recent progress in automated experiment in electron and scanning probe microscopy, ranging from feature to physics discovery via active learning. The applications of classical deep learning methods in streaming image analysis are strongly affected by the out of distribution drift effects, and the approaches to minimize though are discussed. We further present invariant variational autoencoders as a method to disentangle affine distortions and rotational degrees of freedom from other latent variables in imaging and spectral data. The analysis of the latent space of autoencoders further allows establishing physically relevant transformation mechanisms. Extension of encoder approach towards establishing structure-property relationships will be illustrated on the example of plasmonic structures. I will briefly discuss the transition from correlative ML to physics discovery, incorporating prior knowledge and yielding generative physical models of observed phenomena. Finally, I illustrate transition from post-experiment data analysis to active learning process. Here, the strategies based on simple Gaussian Processes often tend to produce sub-optimal results due to the lack of prior knowledge and very simplified (via learned kernel function) representation of spatial complexity of the system. Comparatively, deep kernel learning (DKL) methods allow to realize both the exploration of complex systems towards the discovery of structure-property relationship, and enable automated experiment targeting physics (rather than simple spatial feature) discovery. The latter is illustrated via experimental discovery of the edge plasmons in STEM/EELS and ferroelectric domain dynamics in PFM. 

This research is supported by the by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.

About Sergei V. Kalinin:

Sergei Kalinin is a corporate fellow and a group leader at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory. He received his MS degree from Moscow State University in 1998 and Ph.D. from the University of Pennsylvania (with Dawn Bonnell) in 2002. His research presently focuses on the applications of big data and artificial intelligence methods in atomically resolved imaging by scanning transmission electron microscopy and scanning probes for applications including physics discovery and atomic fabrication, as well as mesoscopic studies of electrochemical, ferroelectric, and transport phenomena via scanning probe microscopy. 

Sergei has co-authored >650 publications, with a total citation of >33,000 and an h-index of >94. He is a fellow of MRS, APS, IoP, IEEE, Foresight Institute, and AVS; a recipient of the Blavatnik Award for Physical Sciences (2018), RMS medal for Scanning Probe Microscopy (2015), Presidential Early Career Award for Scientists and Engineers (PECASE) (2009); Burton medal of Microscopy Society of America (2010); 4 R&D100 Awards (2008, 2010, 2016, and 2018); and a number of other distinctions. 

For Webinar information please contact Kyle Page (

Google Calendar iCal Outlook
Event Type

Seminar, Webinar, Presentation


Materials Science and Engineering


Contact E-Mail

Contact Name

Kyle Page

Recent Activity