Cornell University

This is a past event. Its details are archived for historical purposes.

The contact information may no longer be valid.

Please visit our current events listings to look for similar events by title, location, or venue.

Biophysics Colloquium with Fred MacKintosh

Wednesday, September 12, 2018 at 4:00pm

Clark Hall, 700
Central Campus

Fred MacKintosh, Departments of Chemical & Biomolecular Engineering, Chemistry,
Physics & Astronomy, and the Center for Theoretical Biological Physics, Rice University, Houston, TX USA

Host: Itai Cohen

Phase transitions and the principle of detailed balance in living systems

The mechanics of cells and tissues are largely governed by scaffolds of filamentous proteins that make up the cytoskeleton, as well as extracellular matrices. Evidence is emerging that such networks can exhibit rich mechanical phase behavior. A classic example of a mechanical phase transition was identified by Maxwell for macroscopic engineering structures: networks of struts or springs exhibit a continuous, second-order phase transition at the isostatic point, where the number of constraints imposed by connectivity just equals the number of mechanical degrees of freedom. We will present recent theoretical predictions and experimental evidence for mechanical phase transitions in both synthetic and biopolymer networks. Living systems typically operate far from thermodynamic equilibrium, which affects both their dynamics and mechanical response. As a result of enzymatic activity at the molecular scale, living systems characteristically violate detailed balance, a fundamental principle of equilibrium statistical mechanics. We discuss fundamental non-equilibrium signatures of living systems, including violations of detailed balance at the meso-scale of whole cells.


Event Type





biophysics, biophysics_colloquium, lassp




Contact E-Mail

Contact Name


Contact Phone



Fred MacKintosh

Speaker Affiliation

Rice Unviersity

Open To


Google Calendar iCal Outlook

Recent Activity